
GWD-I Dietmar Erwin, Forschungszentrum Jülich
Category: Informational Michael Rambadt, Forschungszentrum Jülich
Production Grid Management Research Group Philipp Wieder, Forschungszentrum Jülich
http://www.ipg.nasa.gov/ggf-pgm-rg/ June 2, 2003
draft-ggf-pgm-usecasegrip-1.1.doc

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 1

Production Management Use Case: The Grid Interoperability Project

Status of This Memo

This memo provides information to the Grid community on experiences with a heterogeneous,
interoperable Grid. It does not define any standards or technical recommendations. Distribution is
unlimited.

Copyright Notice

Copyright © Global Grid Forum (2003). All Rights Reserved.

Abstract

This use case document describes the experience gained running the software created in the
projects UNICORE Plus1 [1] and GRIP2 [2] in a production environment. The software has the
acronym UNICORE (Uniform Interface to Computing Resources). It has been originally
conceived to provide seamless, secure and intuitive access to distributed resources for the
German high performance computing centres and their users. UNICORE was already deployed
and used on the production systems of the partners during the project phase (January 2000 till
December 2002). The German HPC centres (FZ Jülich, LRZ München, and HLRS Stuttgart) have
signed maintenance agreements with Pallas GmbH, the distributor of the UNICORE software, for
professional support and enhancements after the end of the project.

GRIP (Grid Interoperability Project) has been started in 2002 to combine the unique strength of
UNICORE with those of Globus [3]. By the end of 2002 the project demonstrated that UNICORE
users can submit jobs transparently to resources controlled by Globus or UNICORE and retrieve
the results through the UNICORE client. The implementation was based on Globus Toolkit 2.
GRIP shifted its focus with the advent of the Open Grid Service Architecture (OGSA [4]) and will
implement interoperability with Grid Services as they become available during 2003.

The experience with Grid software in production mode results primarily from the UNICORE
system. The important interoperability issues have been uncovered through the integration of the
production environments with dedicated systems running software under development and by
combining different user communities and organizations. This experiences show what can be
expected when virtual organizations are to be created and managed.

1 UNICORE Plus was funded in part through BMBF Grant 01 IR 001
2 GRIP is funded in part through EC grant IST-2001-32257

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 2

Contents

Abstract.. 1
1 Introduction... 3

1.1 Objectives of UNICORE and GRIP... 3
1.2 The UNICORE Architecture .. 3
1.3 Extensions to the UNICORE architecture in project GRIP ... 5

2 Supported Grid Computing Model.. 7
3 Grid Data Model ... 8
4 Collaboration Structure... 8
5 Type of Grid.. 9
6 Users of the Grid .. 10

6.1 Application end users.. 10
6.2 Application developers .. 10
6.3 Grid Software developers.. 11

7 Mechanism to Promote Cooperation and Mutual Technical Support..................................... 11
8 Deployment of Grid Software ... 11
9 Certificate Practices ... 12

9.1 Certificate Handling... 12
9.2 Experiences with different CAs ... 13

10 Management of Firewall Issues.. 14
11 Data Transport.. 14
12 Job Information Tools ... 15
13 Help Desk Systems Used?... 15
14 Tools to Track Operational Problems ... 16
15 Failure Recovery without User Interaction.. 16
16 Security Considerations.. 16
Appendix A: Use case template .. 17
Author Information ... 19
Glossary... 19
Intellectual Property Statement ... 20
Full Copyright Notice ... 20
References .. 20

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 3

1 Introduction

1.1 Objectives of UNICORE and GRIP

To achieve seamless, secure, and intuitive access to distributed resources, the UNICORE project
had the following objectives:

• UNICORE was to hide the seams resulting from different hardware architectures, vendor
specific operating systems, incompatible batch systems, different application
environments, historically grown computer centre practices, naming conventions, file
system structures, and security policies.

• Security was to be built into the design of UNICORE from the start relying on the X.509
standard for certificates to authenticate servers, software, and users and encrypt the
communication over the internet.

• UNICORE was to be usable by scientists and engineers without having to study vendor
or site-specific documentation. A graphical user interface was to be developed to assist
the user in creating and managing complex jobs and to integrate important applications.

• The administrative autonomy of participating sites including the decision who may use
the resources has been retained. UNICORE is flexible enough to adapt to existing proven
practices at the participating centres.

Project GRIP added the following objectives:

• Make Globus resources available to UNICORE users without changing the architecture of
either system.

• Support applications in a combined UNICORE – Globus Grid without modifying the
application’s source code.

1.2 The UNICORE Architecture

To define the terminology for the remainder of the paper a brief description of UNICORE’s three
tier architecture is given:

• The user is running the UNICORE Client on a local workstation or PC.

• On the top level, each participating computer centre defines one or several UNICORE
Grid site(s) (Usite) that Clients can connect to.

• A Usite offers access to computing or data resources. They are organized as one or
several virtual sites (or Vsites) which can represent the execution and/or storage systems
at the computer centres. In the client the user selects the Vsites to which submit
UNICORE jobs or on which sub-jobs will execute.

The software architecture of a UNICORE system comprising two UNICORE sites with a total of
three Vsites is shown in Figure 1.

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 4

NJS

AJO

User Certificate

Job Preparation Agent
(JPA)

Job Monitor Controller
(JMC)

Abstract status request

User Authentication

www.unicore.de
UNICORE Client

UNICORE Gateway

Target System Interface
(TSI)

Incarnated job

Commands

User mapping,
Resource s info

Site-specific authorization

TSI

Batch Subsystem

TSI

Batch Subsystem

Site A Site B
UNICORE Gateway

...

...

...

TSI

Batch Subsystem

Preparation and
Control of jobs

Network Job Superviser
(NJS)

NJS

Unsafe Internet
(SSL/https)

Safe Intranet
(TCP/http)

optional firewall

optional firewall

UUDBIDB

UUDB IDB

IDB

Job incarnation

Sending jobs to
other gateways,
data transfer

Status request

IDB

T3E T90 T3Efiles

NJS

AJO

User Certificate

Job Preparation Agent
(JPA)

Job Monitor Controller
(JMC)

Abstract status request

User Authentication

www.unicore.de
UNICORE Client

UNICORE Gateway

Target System Interface
(TSI)

Incarnated job

Commands

User mapping,
Resource s info

Site-specific authorization

TSI

Batch Subsystem

TSI

Batch Subsystem

Site A Site B
UNICORE Gateway

...

...

...

TSI

Batch Subsystem

Preparation and
Control of jobs

Network Job Superviser
(NJS)

NJS

Unsafe Internet
(SSL/https)

Safe Intranet
(TCP/http)

optional firewall

optional firewall

UUDBIDB

UUDB IDB

IDB

Job incarnation

Sending jobs to
other gateways,
data transfer

Status request

IDB

T3E T90 T3Efiles

Figure 1: The UNICORE Architecture

The UNICORE components have the following functions:

• The UNICORE Client runs on a Java-enabled user workstation or PC, possibly
somewhere on the insecure Internet. It is the sole interface to the end-user, who uses it
to connect to a UNICORE Gateway. A list of available UNICORE Gateways is maintained
as an XML document. The jobs or status requests and the results are formulated in an
abstract form using the Abstract Job Object (AJO) Java classes.

• The UNICORE Gateway is the single entry point for all UNICORE connections into a
Usite. It provides an Internet address and a port accessible from the outside for SSL
connections. The UNICORE clients will connect to that known port, and use SSL for the
UNICORE protocol. The gateway is the point of user authentication, which is the positive
identification of a client connection as coming from a UNICORE user. A Gateway can be
installed inside or outside of a firewall (also in a demilitarized zone) depending on the
site’s security requirements.

• A UNICORE Vsite is established by two components: the Network Job Supervisor (NJS)
and a Target System Interface (TSI). The UNICORE NJS Server manages all submitted
UNICORE jobs. It performs the user authorization by looking for a mapping of the user
certificate to a valid login in the UNICORE User Data Base (UUDB). The NJS incarnates
jobs from the abstract AJO definition into the appropriate concrete command sequence
for a given target execution system, and hands the incarnated tasks and jobs over to the
TSI. The incarnation is based on the specifications in the Incarnation Data Base (IDB).

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 5

It is the NJS’s task to manage the dependencies between job components and to
schedule the components accordingly. The NJS server stores the job status and results,
and replies to status and result requests from the client.

In case of sub-jobs which are specified to run on a Vsite at a different Usite, the NJS
assumes the role of a Client and submits the sub-job to the remote Gateway (e.g. from
site A to site B). Because of the SSL connection this means that a certificate for the NJS
itself is also required. The status and results of sub-jobs are gathered in the NJS of the
main job.

• Finally, the UNICORE Target System Interface (TSI) accepts incarnated job components
from the NJS, and passes them to the local batch systems for execution. In addition, file
import and export tasks are handled by the TSI, and it also implements low–level status
reporting and control of batch jobs.

1.3 Extensions to the UNICORE architecture in project GRIP

The goal of project GRIP is to enable UNICORE users to access Globus resources3 while
preserving the seamlessness of UNICORE. This has been realized without changing the overall
architecture of UNICORE nor the security model. The approach chosen to achieve this is
described in [5]. As a consequence a Globus controlled resource4 resides in the UNICORE
architecture in Figure 1 at the batch subsystem level. This implies that three main components
had to be developed:

3 The Globus architecture is not covered here except for components relevant to the UNICORE – Globus
interoperability. The entry point for in-depth information is [3].
4 In terms of GRIP this is analogous to a Globus Gatekeeper and a MDS providing resource information.

Network Job Supervisor (NJS)

Proxy
certificate

Incarnated job,
status request Data

Globus Server

Job status

GRAM job request,
status request

Job
status

Output,
files

Globus TSI

Files

Figure 2: Globus TSI

Proxy
certificate

GRAM client

Job mapping Data mapping

GASS server

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 6

• An extension to the UNICORE client to create a temporary proxy certificate [6] which is
required by the Grid Security Infrastructure (GSI) used by Globus. Since the UNICORE
user’s permanent certificate is stored in a keystore in the client, the proxy certificate is
created there making use of UNICORE’s plugin mechanism (see [7] for information on
the UNICORE plugin technique). Section 9 covers certification issues including the Proxy
Certificate Plugin in detail.

• A specific TSI, named Globus TSI, to access the Globus resource. The architecture of
the Globus TSI and its integration into the UNICORE architecture is shown in Figure 2.

• An information provider capable of interpreting Globus MDS information (Monitoring and
Discovery Service [8]) and mapping them to UNICORE specific resource information. An
interoperable resource broker providing these capabilities is developed in GRIP. It is work
in progress and has not yet been tested in production (see also Section 12).

The usage scenario in GRIP does not differ from the one described in Section 1.2 for a pure
UNICORE Grid. This meets the objective to provide access to Globus transparently to the user
and resources without changing the architecture of UNICORE5:

The user creates a job choosing a Globus site as a target. A proxy certificate is created
automatically by the Proxy Certificate Plugin and sent to the UNICORE server via SSL as part of
the Abstract Job Object. The server verifies the signed job and unpacks the proxy certificate,
passing it to the TSI for interaction with the GSI. This is done before the UNICORE job constructs
are mapped to the appropriate Globus RSL (Resource Specification Language [9]) description
and submitted to the Globus Gatekeeper. Pre- and post staging of files including standard output
and error files is implemented integrating the Globus GASS (Global Access to Secondary Storage
[10]) server component into the Globus TSI. In addition job monitor requests and results are
mapped between the corresponding UNICORE and Globus descriptions.

The first version of the Globus TSI has been implemented in Perl making use of the TSI template
which is part of the UNICORE distribution. GRIP also implemented a Java version of the TSI
which serves as a basis to integrate OGSI6 compliant services into future software versions of
UNICORE.

5 Please be aware that extensions to the UNICORE architecture have been developed exploiting APIs, the
plugin mechanisms, the IDB and the TSI template. This means customizing, not changing, the architecture.
6 The Open Grid Services Infrastructure addresses the creation, management and information exchange
between services operating in an OGSA environment. [11] is the GGF draft specifying this infrastructure.

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 7

The following chapters cover the topics relevant to Grid Production Systems as proposed
by the Production Grid Management Research Group of GGF for their Use Cases (see
Appendix A for the use case template).

2 Supported Grid Computing Model

In [12] and [13] Foster and Kesselman define the following Grid computing models:

• Distributed Supercomputing

• High Throughput Computing

• On-Demand Computing

• Data-Intensive Computing

• Collaborative Computing

• Desktop Supercomputing

UNICORE and its extensions in project GRIP most closely match the Distributed Supercomputing
model in terms of the Grid’s purpose and architecture. The computing resources in the UNICORE
Grid are of cause not limited to supercomputers; any managed system may be made available to
the user of the Grid. All distributed resources, especially supercomputers from most major
vendors, are easily accessible via the users desktop. The user creates a job once in the client
and may submit it for execution to different systems at different participating sites without having
to acquire in-depth knowledge of system configuration, naming conventions, or management
policies at the different sites. Complex jobs may be constructed consisting of interdependent
tasks which exploit special characteristics (vector processors, MPP system, clusters of SMPs) of
the participating systems. Typically, the different systems are located at different, administratively
independent sites.

The UNICORE workflow model has been adopted by GRIP and is extended to include Globus
resources. The user creates a job which may contain sub-jobs to be executed on different
platforms at different sites. By definition all sub-jobs are executed independently. The user may
specify dependencies between parts of the job. In this case the NJS ensures that a successor is
started only if its predecessor completed successfully. Flow control constructs support conditional
execution (it-then-else), loops, or conditional holding of the job flow. A full description of the
UNICORE work flow can be found in [1].

• Currently GRIP does not support the management of coupled process involving a co-
scheduler. But in connection with the project’s scheduling and resource management
activities the integration of a co-scheduler will enable this especially in an OGSI-
compliant Grid.

To support MPI applications on distributed systems PACX MPI [14], developed at the High
Performance Computing Center Stuttgart (HLRS), Germany, has been integrated into UNICORE
as a plugin. This prototype is presently not integrated in the UNICORE/GRIP production version
because the required co-scheduling functionality is not available at the batch environments at the
partner sites with the exception of CCS, the Computing Center Software developed at PC² [15] at
the University of Paderborn, Germany. CCS is a topology based resource management for
networked high-performance computers with built-in advance reservation features. The feasibility
of co-scheduling in UNICORE has been demonstrated at Paderborn using CCS.

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 8

3 Grid Data Model

GRIP adopts the UNICORE data model. For each a job a dedicated, temporary user file space
(Uspace) is created automatically for the duration of the job. The location of Uspace is at the
discretion of the site; for performance reasons it typically resides in a file system on the target
system. At the end of a job the Uspace is automatically removed.

File systems to which the user has access on the target system are collectively called Xspace (for
UniX space). Users typically import files from Xspace into Uspace as part of a job and export the
results from Uspace to Xspace. This import/export function may be included in the job as an
explicit import or export task, it may be an implicit import/export task as part of a compute task.
The import/export tasks can also be automatically generated by application plugin that
encapsulated the knowledge which files are needed by the application and which results are
created and have to be saved.

A file that has been created in one sub-job in an Uspace and that is required in a successor sub-
job at a potentially different site (and therefore a different Uspace) must be specified in a transfer
task. UNICORE will use an appropriate file transfer mechanism to copy the data between
Uspaces as described in Section 11.

The user has the option to transfer data from the client workstation into an Uspace and to save
results created during the job to the client for analysis or post-processing. Workstation data is
imported into the Uspace at submission time. Thereafter the UNICORE job may execute
independently of a connection to the workstation. Results stored in Uspace may be exported to
the client as part of the job description. The user has to initiate the transfer once the job is
completed. Application plugins initiate the transfer automatically, even while the job is running, for
example, to show the progress of a simulation graphically. Consolidated stdout or stderr files,
consisting of the individual stdout/stderr files created at each target system may be inspected at
the client workstation. Files to be processed after job completion are saved in a special spool
directory by NJS. This is erased when the user removes the UNICORE job from the Grid explicitly
or when a system administrator initiated clean-up takes place.

In the UNICORE Plus project access to tertiary storage systems, HPSS and TSM, was evaluated
and prototyped. These functions have not been integrated into the production system.

4 Collaboration Structure

UNICORE sites are administratively independent. This was one of the key design decisions. The
participating sites reserve the right to define which of theirs resources are made available to a
particular Grid and to decide who may use these resources. In other words, UNICORE sites can
participate in different virtual organizations. UNICORE must be flexible enough to adapt to
existing proven practices at the participating centres. Until new practices are proven superior to
existing ones, sites will not change, for example, their accounting systems or naming
conventions. In addition, decisions on resource allocations by funding agencies must be
respected. Presently, resources to be used in projects amongst the partners are shared by
agreement within predefined limits. Production users of the UNICORE HPC Grid in Germany use
their existing allocations that they obtained individually at each of the centres. Once the political
and administrative hurdles have been overcome, users will have to apply only for Grid resources,
not for system resources.

UNICORE, Globus and so GRIP deal with existing trust models. Both UNICORE and Globus use
a public key infrastructure (PKI) and X.509V3 certificates.

UNICORE and consequently GRIP use certificates to authenticate users, servers, and software,
especially plugins. A UNICORE/GRIP client must present a valid certificate to the Gateway from
an accepted CA before it is given information about the resources available in the Grid. A

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 9

particular resource at a Vsite may only be used if the certificate is found in the UUDB which maps
certificates to UNIX login names. This guarantees full control over the site’s resources. Other
existing restrictions may apply on the target system, independent of UNICORE or GRIP. For
example, certain jobs may execute only at certain times, depending on the resource management
policy at that specific site.

When the UNICORE project was started the assumption was made that certificates would be
ubiquitous and that each user would use them as part of a normal identification process.
Therefore a very strict CA policy [16] was selected based on the DFN PCA which verified the
identity of the certificate holder and thus could be used to authorize the user. Due to the lack of a
global PKI infrastructure this approach will not scale in production with hundreds of locally
distributed users. UNICORE is technically capable to handle multiple certificates issued by
different CAs. The Germany HPC centres agreed to mutually accept their certificates.

The European Grid project EUROGRID [17], which uses UNICORE as the Grid software, decided
not to follow the strict UNICORE CA policy. Instead an EUROGRID CA has been established
which issues X.509 certificates for both projects EUROGRID and GRIP.

To use Globus resources, a GRIP user needs a temporary proxy certificate generated from the
user certificate within the UNICORE client. By default Globus is configured to accept proxy
certificates generated from a user certificate signed by the Globus CA, but it can be configured to
accept the EUROGRID CA or any other CA as a trusted CA. (see Section 9 for a in-depth
description).

5 Type of Grid

UNICORE and its extension to Globus resources through GRIP support a wide range of UNIX
platforms. They include supercomputers from Cray, Fujitsu, IBM, Hitachi, NEC, and Sun. The
architectures span vector processors, massively parallel systems, clusters of SMPs, workstation
clusters, and individual scalar systems.

The TSI interfaces between UNICORE and the target system’s operating system or batch sub-
system. Presently supported are the vendor specific UNIX derivatives and various dialects of
NQS, LoadLeveler, LSF, PBS, and CCS. To support a new environment requires adapting the
IDB and a TSI template (in Perl or Java) to the appropriate operating system or batch system
interfaces.

UNICORE assumes that the target systems are properly managed and that the servers running
the UNICORE Gateway and NJS are securely configured. A user administration must map the
certificates to target system specific user IDs in a controlled fashion.

The GRIP client which is an extension to the UNICORE client by adding a proxy certificate plugin
is system independent. It is a Java application and requires a Java runtime environment at an
appropriate level (currently 1.4). It has been tested on Windows PCs and UNIX/Linux
workstations; it also runs on Apple Macintosh operating systems.

GRIP adds the possibility to access resources controlled by the Globus Toolkit, which is another
target system according to the design of the GRIP architecture as shown in Section 1.3. Those
resources are potentially administrative separate systems maybe even in a different virtual
organisation. Further information on Globus target systems and supported batch systems is
provided at [3].

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 10

6 Users of the Grid

6.1 Application end users

UNICORE’s main focus is to give end users consistent and intuitive access to a wide range of
resources in a Grid. GRIP extends the range of accessible systems even further by including
Globus resources. The user can construct complex jobs with the aid of the client GUI. The client
creates an abstract description of the job and stores it in XML or AJO format. The user may select
the system the job or parts of the job should execute on and submits the job. Prior to submission
UNICORE automatically checks if the requested resources, for example, number of processors,
memory size, disk space, but also software packages are available at the selected system. If not,
the user is informed and may select a different system or change the requirements. The server
components of UNICORE translate the abstract description into system specific commands7.
These standard features of UNICORE require only two mouse clicks to make a job run on a
different system at a different site. The manual selection of execution systems is consistent with
today’s way users access HPC resources. The resource broker development in GRIP will support
the user in finding systems in a Grid which will run the application according to user selected
criteria.

The user has full control over the job. She may check the status, display the results, cancel the
execution of the job, or remove the job from the system.

In addition, the UNICORE client supports application specific graphical interfaces which assist the
users in preparing jobs in terms of the application. The user specifies problem specific
parameters in the GUI, for example initial conditions for a simulation. The plugin constructs the
necessary job description, including data imports, exports, or transfers. For complex applications
like CPMD (CarParrinello Molecular Dynamics) a wizard can be provided (see [18]) that guides
the user through steps necessary to specify the domain specific values. The wizard can perform
syntactic and semantic checks thus allowing the user to focus on the scientific problem. Projects
UNICORE, EUROGRID and GRIP created plugins for biomolecular applications like CPMD,
Gaussian98, and GAMESS and for the structure mechanic codes MSC.Nastran, Fluent, and
STAR-CD. Application specific support, especially for CPMD and Gaussian98 attracted users to
use UNICORE even if they use mostly the same target system.

6.2 Application developers

Two techniques are available to application developers to integrate an application into a
UNICORE/GRIP environment. The first is to write a plugin, an optionally wizard to offer an
application specific GUI to the end-user. Applications that have no graphical user interface can be
made very attractive and easy to use, especially for novices. Existing GUIs can be integrated as
in the case of MSC.Nastran and Fluent. This retains the known look-and-feel for the users and
adds the seamlessness and security of UNICORE to the application. Writing a plugin in Java can
be a simple task of a few days; creating an elaborate wizard may take a few months. Plugins are
also capable of monitoring running jobs and displaying the outcome of simulations graphically. In
addition to the plugin code, the application developer has to provide an incarnation template to
translate the abstract software resource into UNIX commands. This incarnation template may
have to be customized at each site to accommodate local conventions.

The second technique has been developed in project GRIP. Wrappers have been created that
allow executing applications which can not be modified on the source code level to run both in a
UNICORE and in a Globus environment. This is an important interim step towards Grid
interoperability. It may become obsolete once the wrapped applications become natively Grid
enabled. Examples of this approach can be found in [19].

7In case of Globus targets the abstract job description is translated into RSL.

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 11

6.3 Grid Software developers

The plug-in technique can also be used to extend the base functions of UNICORE. GRIP uses
the technique to create Globus proxy certificates. Interactive access, a major extension to
UNICORE, was implemented through plugins in project EUROGRID. Timer driven monitoring of
UNICORE jobs is a standard UNICORE plugin.

7 Mechanism to Promote Cooperation and Mutual Technical Support

In addition to regular project meetings between the partners, GRIP uses the following mechanism
to promote cooperation and mutual technical support.

In particular all GRIP developers have access to a central server which runs software supporting
professional document management, discussion lists, and project administration called BSCW
(Basic Support for Cooperative Work). New software versions, publications, talks, general
questions, etc. are archived on this server.

All GRIP partners have access to a problem tracking system called GNATS. This tool is
document and submit GRIP software problems to Pallas, the software development company that
maintains UNICORE.

Further technical support is given by the UNICORE administrators at partner sites.

8 Deployment of Grid Software

The UNICORE software consists of several components:

• Client,

• Gateway,

• Network Job Supervisor (NJS),

• Target System Interface (TSI),

• basic Plugins, and

• optional Plugins.

The first five components are bundled for a complete install at new sites or as a complete
replacement for an existing version. All components can be downloaded individually from the
UNICORE Forum website [20].

Individual components can be replaced by new versions without affecting the rest of the system.
It is especially important to decouple upgrades of the client software (Client and Plugins) from the
server software (Gateway, NJS, TSI).

To enhance UNICORE, especially to introduce new features, the following procedure has proven
to work very well during the development phase when frequent updates were the norm.

As a first step, a new version of NJS and/or the Gateway was installed in parallel to the existing
operational system. The new software could be accessed from existing clients by specifying a
different port number. These tests were typically carried out at one of the partner sites. When the
new server components were production ready, they replaced the old ones. All users could
continue to work with UNICORE, however, without having access to the new features. The users
could subsequently download the client versions at their own pace and exploit the new functions.

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 12

This approach allowed also implementing new client functions incrementally in subsequent
releases of the client. Of cause bug fixes could be delivered to the clients in a very timely manner.
The same holds true for the optional plugins.

TSIs need to be updated only to fix problems during the development phase or to adapt to new
versions of the operating system or the batch sub-system. This process is completely decoupled
from the UNICORE deployment process.

In the standard distribution the replacement of a UNICORE client is done manually by the user. It
involves simply to download an archive file (tar or zip), unpack it, and copy the new files into the
appropriate directory on the client workstation. Optionally, the user may use the Java Web Start
package [21] from Sun Microsystems to automate this process.

To allow testing of UNICORE without having to install a complete system, the UNICORE Plus
project developed a public UNICORE test bed [22] to allow interested users to try out the
UNICORE software and functionality. In this testbed several virtual UNICORE sites are simulated
on a dedicated system. A simple install process creates an operational client and provides the
user with an account and the necessary certificate in the UNICORE test Grid.

The GRIP project introduced the additional complexity to install and maintain an operational
Globus system at a well defined level to ensure that the Globus TSI interfaces correctly with the
underlying Globus environment.

During the UNICORE and GRIP development period the developers recognized many important
topics which are essential for production systems:

It is absolutely essential to retain compatibility between different software versions for the users.
A job created and saved in version N of UNICORE has to work in version N+1. During the
development phase with only a small number of mostly internal users the project decided twice to
break the compatibility to allow a rapid change of the UNICORE protocols and the Abstract Job
Object structure. The alternative would have been to invest development resources into
compatibility modules without major additional benefits. The compatibility problem is now solved,
since UNICORE stores jobs both in the internal AJO format and as XML text. The client is now
always able to interpret one of the formats from a previous version.

Incompatibilities between different Java versions can be very painful to the user. It can not always
be guaranteed that code written for a newer version of Java will execute properly in each
implementation of a Java Run Time Environment. This forces users to upgrade their client to the
latest version of Java. Basing the Client on an old version of Java is also no remedy since the
user or the installation may decide for other valid reasons to upgrade the Java RTE on the client
platform.

9 Certificate Practices

This chapter gives an overview of GRIP security solutions. The GRIP security environment is a
combination of models and practices from both the UNICORE and the Globus security. To get a
detailed insight into both security solutions refer to [23].

9.1 Certificate Handling

Both UNICORE and Globus use security mechanisms to give users secure access to remote
resources. Although both security architectures are based on standard public key technology
using X.509 certificates, the authentication mechanisms differ fundamentally. UNICORE signs
each part of the job with the user’s private key. NJS can verify the integrity of jobs and can map
the certificate to the correct userid at the target system. The same is true for other requests send
to a server from the client. It is not possible for a malicious user to fake someone’s identity. The
UNICORE user’s private key is encrypted and stored in a keystore locally on the user’s machine.
It should never be send to another system over the network; in fact in GRIP it need not leave the

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 13

user’s workstation. The user’s public key has to be made available to site administrators to be
integrated into the UUDB (see Section 1.2).

In contrast, Globus uses proxy certificates to delegate rights. GRIP has to handle both techniques
transparently to the user for job submission, job monitoring, and file transfers, for example via
GridFTP.

A special plugin has been developed in GRIP as an extension to the UNICORE client that
generates a proxy certificate from the GRIP user certificate. The user may use the plugin’s
graphical interface to adjust characteristics of the proxy certificate, e.g. the expiration time of the
proxy. GRIP users do not have to have a certificate signed by the Globus CA to submit jobs from
UNICORE to Globus. The prerequisite is that the Globus site trusts the CA which signed the
GRIP user certificate.

The GRIP proxy certificate consists of:

• a newly created temporary private key, and

• a temporary X.509 certificate which is signed with the users original private key and
which contains the newly created public key, and the user’s original public key.

The proxy certificate is transferred via SSL to the NJS as part of the AJO. The Globus TSI acts as
a Globus client. The proxy certificate is stored in the user’s file space which is only accessible by
the user and which is removed after the job has finished. The Globus TSI can access it whenever
the proxy certificate is needed for SSL handshake in Globus GSI.

To guarantee secure transfer of the proxy certificate from the NJS to the Globus TSI, GRIP
implements this link as an authenticated, private SSL connection. This process is consistent with
the handling of proxy certificates in Globus.

In GRIP the UNICORE server components, Gateway, NJS and TSI are provided with a server
certificate.

9.2 Experiences with different CAs

The UNICORE and the GRIP projects implemented different policies to issue X.509 certificates.
The UNICORE certification policy was based on the very strict policy published by the German
Research Network DFN (DFN – PCA). To obtain a UNICORE certificate the user had to appear in
person at a Registration Authority (RA) and prove his or her identity and sign a certification
request. The RA had to check the correctness of the information in the certificate, like name and
organization. A document signed by the user and the RA had to be mailed to the CA by postal
mail. A certificate would only be issued upon receipt of this document. The typical turn-around
time would be one week. Although certificates issued according to the DFN-PCA policy guarantee
the identity of the certificate holder, this certification practice has turned out to be
counterproductive because of the long process time. In addition, it requires that Registration
Authorities are in place where ever potential customers are. The German HPC centres
consequently agreed to relax the CA policy. Each centre may issue certificates and use
established process which have been in place and proven adequate to issue user accounts at the
centres. This implies typically a fax, signed by the user and the user’s department head.

GRIP uses the EUROGRID CA established for a Europe-wide Grid. The EUROGRID project uses
a weaker security policy. Users who want to receive a EUROGRID certificate do not have to
appear at the RA in person and prove their identity. The local administrators at the participating
centre will verify the CA request and confirm this to the CA via email. Since authentication and
authorization are decoupled by definition, this process proved to be adequate for project partners
to protect their resources.

A production environment requires solutions to the following issues:

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 14

1. CA policies that are accepted by all participants of a Grid.

2. A reliable and efficient Public Key Infrastructure (PKI).

3. Software that can handle multiple CAs.

UNICORE and GRIP have proven that the third point can be solved. The first two are non-
technical and have to be solved differently.

10 Management of Firewall Issues

UNICORE and its extensions in GRIP have been designed to work with firewalls. Only one port
has to be open allowing SSL connections to the Gateway. In production UNICORE Gateways are
often running on dedicated machines only opening that single port as an entry point for UNICORE
client connections (see also Figure 1).The port number can be selected by the site. The list of
open ports is published among the participating centres within a Grid. When the client is started
the current list of participating sites is loaded into the client. Alternatively, the user may import the
list of gateways and matching ports into the client and use a local copy. The local copy may
contain only a subset of all Usites or it may contain additional Gateways for test purposes. The
use of multiple site lists is also supported. The access to Globus resources within the firewall from
a UNICORE client requires no additional modifications to the local firewall policies.

To verify that UNICORE poses no security hazard to the installation, the security administrators
may inspect the Java source of the Gateway code.

At one time, one of the partners in the UNICORE project allowed only network connections to
previously defined IP addresses. This firewall policy made Grid computing practically impossible
since each new user would have to be added to management list in the firewall.

The Globus TSI allows two different modes of operation:

1. The Globus server installation is local to the Globus TSI, which means that the Globus
home directory and the UNICORE Uspace are identical.

2. The Globus server installation is remote to the Globus TSI, potentially with a firewall
between the Globus client integrated in the Globus TSI and the Globus server
installation.

In the first case, no interoperability problems occur.

In the second case one has to cope with the firewall issues characteristic for Globus as described
in [24]. To prevent the UNICORE security model from being weakened, in this case the Globus
TSI uses only Globus commands which do not require opening ports for incoming connections.

11 Data Transport

The UNICORE internal file transfer mechanism uses a java zip stream and is based on UPL
(UNICORE Protocol Layer) which is implemented on top of SSL. Depending on the data source
and sink, two different data transport paths are possible:

1. From the UNICORE client side to the user’s Uspace at a target system and vice versa. In
UNICORE terms this is called an import task (to the Uspace) or an export task (from the
Uspace).

2. From the Uspace at target system A to the (remote) Uspace at target system B. This is a
transfer task.

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 15

Section 3 outlines the integration of the data transport mechanisms into GRIP’s data model

In case of GRIP there are no enhancements necessary if Uspace and Globus home directory are
identical. Assuming that the Globus server is remote to the Globus TSI, files have to be
transported to the remote Globus side using the appropriate Globus mechanisms.

As part of the EUROGRID project, the UNICORE architecture has been extended to use
alternative file transfer (AFT) mechanisms, other than the UNICORE internal one described
above. The NJS was extended by an AFT module and a corresponding API to handle any desired
alternative file transfer protocol. One implementation of this interface uses GridFTP [25] as an
AFT mechanism (see [26]). Compared to the UPL data transport, where data is always
transferred via Gateway and NJS to the target system (see also Figure 1), the GridFTP AFT
transfers files directly from one target system to another. The GridFTP client residing on the TSI
level uses the proxy certificate described in Section 5 and Section 12 to contact the remote
GridFTP server which uses the TSI server certificate for GSI enabled authentication and
encryption.

Since all data transport actions are treated like normal tasks in the UNICORE, they are fully
supported by UNICORE’s workflow engine. Currently implemented data transport tasks are:
import task, export task and transfer task, described above and in Section 3.

12 Job Information Tools

GRIP uses the UNICORE functions to obtain information about a submitted job. From within the
UNICORE client users can request an updated job status. This information is available at three
levels: At the overview level, colour coded icons show the status of the jobs, sub-jobs, or
individual tasks. The colours indicate, for example, queued within UNICORE, waiting to be
executed, executing, completed successfully, terminated abnormally. In addition, detailed
information, giving for example the reason for a failure, or the iteration count for a task repeated
in a loop, is available on request. At the lowest level all information that the target system typically
places in stdout or stderr is at the user’s disposal. To receive this information, the user must
present her valid certificate.

To prepare a job the user can inspect the resource information for all target systems in the Grid
he or she is authorized to use. This includes capacity resources, like number of nodes and
processors, available memory size and available disk space, maximum CPU time that may be
requested; It also includes capability resources, like installed application including their version.

This information is maintained individually at each participating site in the Grid. No central
administration is required. Whenever the hardware or software configuration changes, it is the
responsibility of the administrators to update the resource description in the incarnation database
(IDB). The updated information is made available to the client during the next connection to the
server or upon an explicit refresh request by the user.

This information is also available to the resource broker that is being developed as part of project
GRIP. For the time being the translation from the Globus MDS to the UNICORE IDB is not
automatic. GRIP is working on an ontology based process.

13 Help Desk Systems Used?

Please refer to Section 7.

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 16

14 Tools to Track Operational Problems

The administrators have a range of UNICORE specific command line administration tools at their
disposal to check the functionality of the servers and the status of the different TSIs on the target
systems. These tools allow obtaining status information about any submitted job, to remove a job
on behalf of the user, and to clean up in case of errors.

The UNICORE server components, Gateway, NJS and TSI, produce detailed logging information
about all submitted jobs. This information helps the UNICORE administrators to find the reason
for problems and assists in solving them.

Further more, the GNATS software which has been described in paragraph 7, is used to request
problem resolution from the developers.

15 Failure Recovery without User Interaction

UNICORE has been designed minimize the impact of system problems for the user and to inform
the user if components of the Grid are unavailable.

UNICORE components, like the Gateway, NJS, or TSIs are monitored internally. If they fail they
are restarted automatically. Also if the systems the run on fail, they are started once the systems
comes up. For all these failures of the Grid, no user interaction is required. It might require the
intervention of an administrator to resolve the cause of the error.

If the user tries to access a system that is temporarily not available an error message is shown at
the client. In practice, a UNICORE/GRIP based Grid is as available as the participating target
systems are.

16 Security Considerations

Security is a crucial to the success of a Grid Production environment as the one described in this
paper. Therefore the issues concerning the security environment established in GRIP are
discussed in detail in the following sections:

• The integration of security solutions into the UNICORE and GRIP architecture is
described in the introductory Section 1.

• In context with the description of the collaboration structure the CA and PKI are inspected
in Section 4.

• Section 9 illustrates the project’s certificate practices and the experiences made using
multiple CAs.

• The firewall requirements are covered in Section 10.

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 17

Appendix A: Use case template

The following set of questions has been developed by the GGF PGM-RG to allow comparing
different use cases. They have been addressed in this document if applicable.

Which Grid Computing model does your Grid support?

• Loosely coupled processes: types?
• Coupled processes: co-scheduling needed
• Tightly coupled processes: co-scheduling needed, firewall requirements

Which Grid data model do you use?

• Only user data in user’s file system
• User’s file system + grid scratch file systems
• Occasional access to tertiary storage systems
• Distributed analysis of massive datasets (SRB)
• Large reference datasets (caching)

How does your collaboration structure look like?

• Existing trust model, within an organisation, similar systems
• Administrative diverse systems within one organisation (What is divers?)
• Administrative heterogeneous model (e.g. science labs and industry)

Which Type of Grid?

• Peer to peer
• Administrated separate systems (workstations, clusters, HPC systems)

Type of users in your Grid?

• Application developers
• Applications end users
• Grid software developers (omit them in a production Grid)
• External customers

Which mechanisms are established to promote cooperation and mutual technical support?

• Compare GUS WG

How do you manage the deployment of Grid software?

• Testing procedures (what, codes)
• Testbed implementation (architectures, size, benchmarks)
• Steps to production (roll out procedure, on site testing, system release)

Certificate practices?

• Type of identification verification
• Key protection
• Entities that need certification
• Testing procedures
• Installation

How do you manage co-scheduling?

• Not available
• Type of scheduler, batch system
• Own developments

How do you manage firewall issues?

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 18

• Open port control
• Software modifications
• Interoperability problems

How do you handle data transport?

• Separate GridFTP systems
• Global files systems (which one)
• Support by workflow models
• Is up to the user

What information does your user get about his job/account?

Which help desk system do you use?

Which tools do you user to track operational problems?

From which failures can you Grid recover without user interaction?

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 19

Author Information

Dietmar Erwin, Michael Rambadt, Philipp Wieder
Research Centre Jülich
Central Institute for Applied Mathematics
Forschungszentrum Jülich GmbH
52425 Jülich
Germany
{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de

Glossary

AFT Alternative File Transfer

AJO Abstract Job Object

API Application Programmer’s Interface

BSCW Basic Support for Cooperative Work

CCS Computing Center Software

CPMD CarParrinello Molecular Dynamics

DFN Deutsches Forschungsnetz (German Research Network)

GRAM Globus Resource Allocation Manager

GRIP Grid Interoperability Project

GSI Grid Security Infrastructure

HPSS High Performance Storage System

IDB Incarnation Database

PKI Public Key Infrastructure

NJS Network Job Supervisor

LSF Load Sharing Facility

MDS Monitoring and Discovery Service

MPP Massively Parallel Processing

NQS Network Queuing System

PBS Portable Batch System

RA Registration Authority

RSL Resource Specification Language

SMP Symetric Multiprocessing

SSL Secure Socket Layer

TSI Target System Interface

TSM Tivoli Storage Manager

UNICORE Uniform Interface to Computing Resources

UPL UNICORE Protocol Layer

UUDB UNICORE User Database

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 20

XML Extensible Markup Language

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
GGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

References

[1] D. Erwin (ed.), “UNICORE Plus Final Report – Uniform Interface to Computing Resources”,
UNICORE Forum e.V., ISBN 3-00-011592-7, 2003. http://www.unicore.org.

[2] “The Grid Interoperability Project.” http://www.grid-interoperability.org.

[3] “The Globus Project.” http://www.globus.org.

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 21

[4] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration”, Global Grid Forum, Open Grid
Service Infrastructure WG Draft, Version 2.9, 2002.

[5] D. Snelling, S. van den Berghe, G. von Laszewski, Ph. Wieder, D. Breuer, J. MacLaren, D.
Nicole, and H.-Ch. Hoppe, “A UNICORE Globus Interoperability Layer”, Computing and
Informatics, Vol. 21, pp. 399 – 411, 2002.

[6] S. Tuecke, D. Engert, I. Foster, V. Welch, M. Thompson, L. Pearlman, and C. Kesselman,
“Internet X.509 Public Key Infrastructure Proxy Certificate Profile”, Internet Engineering
Task Force, Public-Key Infrastructure (X.509) WG Draft,
http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-06.txt.

[7] M. Romberg, “The UNICORE Grid infrastructure”, Scientific Programming, 10(2), pp. 149 –
157, 2002.

[8] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid Information Services for
Distributed Resource Sharing”, in Proceedings of the Tenth IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10), IEEE Press, August 2001.

[9] “Globus Resource Allocation Manager (GRAM).”
http://www-unix.globus.org/api/c-globus-
2.2/globus_gram_documentation/html/main.html.

[10] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke, “GASS: A Data Movement
and Access Service for Wide Area Computing Systems”, Sixth Workshop on I/O in Parallel
and Distributed Systems, 1999.
http://www.cs.dartmouth.edu/iopads/papers.html.

[11] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, D. Snelling, and P.
Vanderbilt, “Open Grid Services Infrastructure (OGSI)”, Global Grid Forum, Open Grid
Service Infrastructure WG GWD-R, Version 1.0, 2003.

[12] I. Foster, and C. Kesselman (eds.), “The Grid: Blueprint for a New Computing
Infrastructure”, Morgan Kaufmann, 1999.

[13] I. Foster, and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit“, Intl. J.
Supercomputer Applications, 11(2):115-128, 1997

[14] Edgar Gabriel, Michael M. Resch, Thomas Beisel, and Rainer Keller, “Distributed
Computing in a Heterogeneous Computing Environment”, Vassil Alexandrov, Jack
Dongarra (eds.),in Recent Advances in Parallel Virtual Machine and Message Passing
Interface, pp. 180-188, Springer, 1998.

[15] “CCS: Computing Center Software.”
 http://www.uni-paderborn.de/pc2/projects/ccs/

[16] E. Bötsch, “UNICORE-CA (U.CA) – Certification Guidelines for UNICORE”. 2000.
http://www.fz-juelich.de/unicoreplus/U-CA_policy_eng.pdf.

[17] “The EUROGRID project.” http://www.eurogrid.org.

[18] V. Huber, “UNICORE: A Grid Computing Environment for Distributed and Parallel
Computing”, in Parallel Computing Technologies, Proceedings of the 6th PaCT Conference
2001, pp. 258, Springer-Verlag LNCS 2127, 2001.

GWD-I June 2, 2003

{d.erwin, m.rambadt, ph.wieder}@fz-juelich.de 22

[19] J. Pytlinski, L. Skorwider, V. Huber, and P. Bala, “UNICORE - An Uniform Platform for
Chemistry on the Grid”, Journal of Computational Methods in Science and Engineering 2
(3s-4s), pp. 369-376, 2002.

[20] “The UNICORE Forum e.V.” http://www.unicore.org.

[21] “Java Web Start.” http://java.sun.com/products/javawebstart.

[22] “The UNICORE Test Grid.” http://www.fz-juelich.de/unicore-test.

[23] T. Goss-Walter, R. Letz, T. Kentemich, H.-Ch. Hoppe, and Ph. Wieder, “An Analysis of the
UNICORE Security Model”, Global Grid Forum, Grid Certificate Policy WG GWD-I, 2002.

[24] V. Welch, “Globus Toolkit Firewall Requirements“, Version 03, 2002.
http://www.globus.org/security/v2.0/Globus%20Firewall%20Requirement
s-0.3.pdf.

[25] W. Allcock (ed.), “Protocol Extensions to FTP for the Grid”, Global Grid Forum, GridFTP
WG GWD-R, Revision 3, 2003. http://www-isd.fnal.gov/gridftp-
wg/draft/GridFTPRev3.pdf.

[26] D. Breuer, D. Mallmann, D. Snelling, and S. van den Berghe, “GridFTP as an Alternative
File Transfer Mechanism within the UNICORE Environment”, GRIDSTART Technical
Bulletin, Volume 2, 2003.
http://www.gridstart.org/download/TechnicalBulletinFeb2003.pdf.

